I checked out of the Motel 6 in Colorado Springs and filled the rental car with petrol before driving to Manitou Springs then parked and picked up my ticket before boarding the train for the 8:00 AM departure.
History of the Trains and Maintenance What is a "Cog" Railway?Conventional railroads use the friction of wheels upon the rails, called "adhesion," to provide locomotive power. A cog, or rack, railroad uses a gear, or cog wheel, to mesh into a special center rack rail to climb much steeper grades than those possible with a standard adhesion railroad. An adhesion railroad can only climb grades of four to six percent, with very short sections of up to nine percent. A "rack" railroad can climb grades of up to 48 percent, depending upon the type of rack system employed. Some Swiss trains use a combination of "rack" and "adhesion" systems, enabling the trains to reach much higher speeds on the adhesion sections. The majority of rack railroads cannot go much faster than 15 miles per hour or they run the risk of dislodgement from the rack rail - the top speed of the Pikes Peak Railway is about nine miles and hour. The Manitou & Pikes Peak Railway uses a double cog, or Abt, system.
The first cog railway was built in New Hampshire in 1869. The Swiss, seeing the benefits of such a system, were quick to make use of this technology and numerous rack railways were built in Switzerland. Indeed, Switzerland is the country where most rack railways are located. The Pikes Peak Railway, however, is the highest rack railway in the world as well as the highest railway in North America and the Northern Hemisphere. The Pikes Peak Railway also has a perfect safety record!
History of the TrainsIn the late 1880's, one of the tourists who visited the Pikes Peak Region was Zalmon Simmons, inventor and founder of the Simmons Beautyrest Mattress Company. Mr. Simmons rode to the summit of Pike's Peak on a mule, partly to enjoy the view and partly to check upon one of his inventions: an insulator for the telegraph wires that ran to the Army Signal Station on the Summit. In those days, the arduous, two day trip on a mule was the only way to reach the top. Mr. Simmons was awed by the scenery but determined that the views should be experienced in a more civilized and comfortable manner. He was relaxing in one of Manitou Springs' mineral baths after his return, when the owner of his hotel mentioned the idea of a railway to the top. Mr. Simmons agreed with the concept and soon after set about providing the capital needed to fund such a venture.
In 1889, the Manitou and Pikes Peak Railway Company was founded and track construction began in earnest. Top wages were 25 cents an hour with six workers dying in blasting and construction accidents. The Age of Steam dominated the late 1800s, and in 1890, three engines from Baldwin Locomotive Works in Philadelphia, Pennsylvania were delivered. Limited service was initiated in that year to the Halfway House Hotel. These locomotives were eventually converted to operate using the Vauclain Compound system (with two cylinders, one high pressure and one low), and a total of six engines were in service during the "steam" era. The original three engines were named "Pikes Peak," "Manitou," and "John Hulbert," but were soon assigned numbers. Of the original six, only four are still operational and, along with a restored coach, is able to make infrequent trips short distances up the track.
The spring of 1891 was a snowy one, and the opening of the line was delayed until late June. On the afternoon of June 30th, 1891, the first passenger train, carrying a church choir from Denver, made it to the summit of Pikes Peak by train. A previously scheduled group of dignitaries had been turned back earlier in the day by a rock slide around 12,000 feet. Regardless, the railway was now operational!
A new era began in the late 1930's with the introduction of gasoline and diesel powered locomotives. Spencer Penrose, owner of the Broadmoor Hotel, had acquired the Railway in 1925 and efforts were underway to build a compact, self-contained railcar, which could carry fewer passengers during the slow parts of the season. These efforts culminated in engine No. 7: a gas-powered, 23-passenger unit, which made its first run on June 16, 1938. It is believed that No. 7 is the first rack railcar ever built in the world.
The experiment was a huge success, and within a year of No. 7's debut, No. 8, possibly the world's first diesel-electric cog locomotive was delivered from the General Electric Company. These diesel locomotives eliminated the time-consuming water stops as well as the back-breaking job of shoveling coal. Coupled with "Streamliner" coaches, Nos. 8, 9, 10, 11, and 12 formed the backbone of the Railway's fleet from 1940 through 1965. The coaches could carry 56 passengers in comfort and style.
The modern age of the Manitou & Pikes Peak Railway began with the requisition of railcars from the Swiss Locomotive Works in Winterthur, Switzerland. In the early 1960's, as tourism began to increase in Colorado, the Railway needed additional equipment, but the General Electric Company was not interested in the project. With that in mind, Mr. Thayer Tutt, President of the Railway, traveled to Switzerland to arrange for modern railcar acquisitions.
The first units to arrive from Switzerland were Nos. 14 and 15, which were put into service in 1964. They proved so successful that soon after, the Railway ordered two more nearly identical units, Nos. 16 and 17. These Swiss railcars are self-contained units, powered by two Cummins diesel engines mounted underneath the seating area. As with the GE locomotives, they are diesel-electric trains. Generators driven by the diesel engines provide the power to traction motors for the ascent. For the descent, the diesel engines are shut down and the traction motors work as generators. Heat is disippated by resistor banks on the roof of the railcars.
Bigger units were needed as tourism continued to grow into the 1970s. The Manitou and Pikes Peak Railway officials returned to Swiss Locomotive Works in 1974 with a request for a train which could carry over 200 people. The results were the articulated railcars Nos. 18 and 19. These cars resemble the smaller single units but are joined by a "bellows" in the middle. In addition to capacity and size, a key difference between the two trains is that the larger units are diesel-hydraulic. Power is provided by a transmission/retarded made by Voith Turbo of Germany. Somewhat like the smaller units, the engines must idle on the return trip. These units originally came equipped with a TwinDisc transmission and a stand-alone retarder by Voith. These have now been replaced with the Voith T211rzze transmission which functions as a transmission going up and a retarder coming down. These first two modern railcars were put into service for the 1976 season with Nos. 24 and 25 being added in 1984 and 1989, respectively.
As an adjunct to the arrival of the first big Swiss railcars, new switches were installed along the line. Prior to 1976, trains departed the Manitou Depot only three times a day in the summer. The equipment needed to transport the passengers at the depot was brought down from the shop, loaded up, and arrived with the train at the summit. With the addition of new sidings at Minnehaha and Windy Point, trains can now run up to eight times per day and pass along the line. Now, trains depart in mid-summer, every eighty minutes, from 8:00 am until 5:20 pm.
In the mid-1960s, a young Swiss engineer by the name of Martin Frick was hired from Swiss Locomotive Works. Over the next 30 years, Mr. Frick brought the Railway into the modern age. The Manitou & Pikes Peak Railway is deeply indebted to Mr. Frick for his years of dedication and hard work. In addition to the first 80 passenger railcars, he did a major expansion of the shop facilities; oversaw the installation of new, modern electric and manual switches both in the yard and along the line; designed and built snowplow #22 with shop personnel; helped with the design and supervision of the acquisition of four 214-passenger railcars; and many other improvements too numerous to mention. As of April 2005, Mr. Frick continues to help with Swiss and German transactions and offers expert advice.
MaintenanceSince we're closed five days a week in the winter, a lot of people ask, "What do you people do all winter?!" In reality, the winters are actually busier than the summers. Although we only run one trip a day in the winter, versus up to 12 in mid-summer, our mechanics are up to their elbows in grease, diesel fuel, and train parts. We defer all major maintenance on the trains until things slow down. In the mid-summer, we have our hands full running eight daily departures of up to twelve trains total to the top of the Peak. But when things begin to slow down, the real dirty work begins and dirty is no joke!
In addition to the rigorous routine maintenance every unit receives, we do various other jobs in the winter, like changing cog wheels.
The steel tires on a cog railway wear very slowly, but the cog wheels do not. The tires, or wheels, bear the weight of the railcars and center the units so the cog wheels properly mesh with the rack rail. We measure the wear on all units every year, and when the wear is too great, they wheels must be either rotated or changed. As they only wear on the downhill side of the teeth, and the rack rail wears only on the uphill side, the wheels and rack rail can be turned after a certain amount of wear has occurred.
Turning or changing wheels and rails is a long and time-consuming process involving draining all fluids; detaching fuel, electric, and air lines; disconnecting the drive shafts; and lowering the cog assembly out of the train. Then the tires must be removed and the cog wheels two per axle are pulled off and are either changed or rotated. A well-trained and experienced crew of four can replace or turn a cog wheel and drop it back in its associated axle in one week. This means that a small railcar takes two weeks and a large railcar takes one month to complete.
My Trip To The Top, FinallyThe train was ready to head to the summit of Pikes Peak.
This one-car train would be followed by a two car train once the standby passengers were boarded on that train.
Once the ticket office called out of the window that the last two seats were filled by two people from Boston, one who sat next to me, we departed Manitou Springs at 8:10 AM.
Leaving the Manitou Springs station behind as we started up the 8.9 miles of track to Pikes Peak.
Passing the Pikes Peaks Cog Railroad shops.
Entering the Pike National Forest.
Looking back down the grade as we climbed the grade.
The rocks are interesting and you can imagine whatever you wish them to be.
We started up Son-of-a-Gun Hill.
Another rock formation.
We kept climbing.
Our conductor gave a rolling commentary.
More rock formations.
The strongest tree in the world is holding up this boulder.
Climbing Son-of-a-Gun Hill.
Jumbo the Elephant Rock.
As we climbed higher, Colorado Springs could be seen.
Rock formations along our route.
A waterfall on Ruxton Creek.
Water tank.
Minnehaha at 8,332 feet
Climbing the grade.
Seal Rock.
More rock formations
Another rock formation along our route.
The water tower.
The next rock formation.
Another curve.
Ruxton Park.
Taking the curves.
An interesting tree.
Deer Park.
Rounding another curve.
Mountain View 10,012 feet.
We were proceeding up the longest straight track on the railroad.
Pikes Peak came into view near Mountain View.
Rolling up the longest straight track on the railroad.
Another water tank.
We continued to climb.
Rock outcroppings across the valley.
Looking down on Colorado Springs.
Asecnding Big Hill.
The Big Hill is almost 25 percent grade.
The trees became shorter as we neared the tree line.
Getting near the tree line.
These trees do not grow much during their short growing season.
Lake Moraine.
A peak across the valley.
Looking back down the grade of the Big Hill.
The railroad work crew takes a break while we passed.
Looking back.
A train was running ahead of us but it was not a passenger train.
Looking across the valley.
A marmot runs away from the train.
Taking the final curve into Windy Point.
Colorado Springs from a long way up.
A work train in the siding at Windy Point.
A look back.
The work train as we passed by.
Windy Point 12,130 feet
Windy Point.
We left Windy Point behind.
The continuation of our climb towards the summit of Pikes Peak.
This is the location where Chris Parker and I reached in October 2006, because of a deep snow bank that the train could not negotitate. Today, there was no snow, so we continued to move up the grade.
New trackage at Milepost 7 as we made our way to the top.